User Manual

Contents:

Bibliography

BBC+94

R. Barrett, M. Berry, T. F. Chan, J. Demmel, J. Donato, J. Dongarra, V. Eijkhout, R. Pozo, C. Romine, and H. Van der Vorst. Templates for the Solution of Linear Systems: Building Blocks for Iterative Methods. SIAM, Philadelphia, PA, 2 edition, 1994.

CS99

X. Cai and M. Sarkis. A Restricted Additive Schwarz Preconditioner for General Sparse Linear Systems. SIAM J. Sci. Comput, 21:792–797, 1999.

DS03

Hasan Dag and Adam Semlyen. A new preconditioned conjugate gradient power flow. IEEE Transactions on Power Systems, 18(4):1248–1255, 2003.

GSF93

Gerard L. G, Gerard Sleijpen, and Diederik Fokkema. Bicgstab(l) For Linear Equations Involving Unsymmetric Matrices With Complex Spectrum. 1993.

GH95

M. J. Grote and T. Huckle. Effective parallel preconditioning with sparse approximate inverses. PPSC, pages 466–471, 1995.

KY93

L. Y. Kolotilina and A. Y. Yeremin. Factorized sparse approximate inverse preconditionings, 1. theory. SIAM J. Matrix Anal. Appl., 14:45–58, 1993.

LGHS06

Xingping Liu, Tongxiang Gu, Xudeng Hang, and Zhiqiang Sheng. A parallel version of QMRCGSTAB method for large linear systems in distributed parallel environments. Applied Mathematics and Computation, 172(2):744 – 752, 2006. Special issue for The Beijing-HK Scientific Computing Meetings.

Luk12

Dimitar Lukarski. Parallel Sparse Linear Algebra for Multi-core and Many-core Platforms – Parallel Solvers and Preconditioners. PhD thesis, Karlsruhe Institute of Technology, 2012.

Not10

Y. Notay. An aggregation-based algebraic multigrid method. 2010.

Not00

Yvan Notay. Flexible conjugate gradients. SIAM J. Sci. Comput, 22:1444–1460, 2000.

Saa03

Y. Saad. Iterative Methods for Sparse Linear Systems. Society for Industrial and Applied Mathematics, Philadelphia, PA, USA, 2003. ISBN 0898715342.

SvG08

Peter Sonneveld and Martin B. van Gijzen. IDR(s): a family of simple and fast algorithms for solving large nonsymmetric systems of linear equations. SIAM J. Scientific Computing, 31(2):1035–1062, 2008.

TOS03

Ulrich Trottenberg, Cornelis Oosterlee, and Anton Schüller. Multigrid. Academic Press, Amsterdam, 2003. ISBN 0-12-701070-X ; 978-0-12-701070-0.

VGS11

Martin B. Van Gijzen and Peter Sonneveld. Algorithm 913: an elegant IDR(s) variant that efficiently exploits biorthogonality properties. ACM Trans. Math. Softw., 38(1):5:1–5:19, December 2011. URL: http://doi.acm.org/10.1145/2049662.2049667, doi:10.1145/2049662.2049667.

VMB96

P. Vanek, J. Mandel, and M. Brezina. Algebraic multigrid by smoothed aggregation for second and fourth order elliptic problems. Computing, 56(3):179–196, 1996.

MatrixMarketa

Matrix Market. Format description. http://math.nist.gov/MatrixMarket/formats.html.

MatrixMarketb

Matrix Market. Matlab interface. http://math.nist.gov/MatrixMarket/mmio/matlab/mmiomatlab.html.